

STOCK BALANCING

Data Brewery

IIT Kharagpur

- Akash Roy
- Arnab Moitra
- Sujabrata Mallick

MAVERICK 2.0

BREWERY

M

Depot

distributor

6

í

The depots where **Reorder Point = 0** depots are useless and excluded from further analysis.

Distributors which have **no order** are not useful for further analysis

Scenario 0 will be analysed under **recommendation part**.

DATA PREPROCESSING

OBJECTIVE FUNCTION

EVALUATION METRIC

RECOMMENDATION

 $S_3 = 0.05 * [\sum_i (X_i - Q_i)^2 * (X_i < Q_i)]$

greater then MaxDOC, similarly for S_3 if $X_i * ROP_i$ is lesser then MinDOC

 $P_i = MaxDOC_i / ROP_i$

 $Q_i = MinDOC_i / ROP_i$

ROP = Re-Order Point

Balanced CS/ROP Ratio **S₁ = 3* Σ_i Σ_j (X_i – X_j) ²**

Part - I

Higher S₁ would mean X_i values are less balanced, i.e. they quite differ

Decision Variables: X_1 , X_2 ,..., X_n

 $\mathbf{X}_{\mathbf{i}}$ = CS/ROP Ratio for ith DEPOT in Grid

Objective: Minimize S₁ + S₂ + S₃ + S₄ - S₅

Part – 4

Higher CS/ROP Ratio

$S_5 = 1.2 * \Sigma_i (e^{PROP_i}) * X_i^2$

 S_5 is NOT A PENALTY term, i.e. it's a reward term, weighted by PROP_i. Higher the X_ivalue, the better.

 $O_i = Distributor Order_i / ROP_i$ ROP = Re-Order Point

Part – 3

Allocate DIST to a Maximum cap to their Orders

$S_4 = 80 * [\Sigma_i (X_i - O_i) * (X_i > O_i)]$

S₄ only counts for those where X_i id greater than O_i and Location Type is DIST, a high weightage is given.

ROP = As usual, it's Re-Order Point.

 $\begin{aligned} & \mathsf{PROP}_i = \mathsf{ROP}_i \,/\, \sum_j \mathsf{ROP}_j \\ & \text{i.e. Proportion of ROP of } i^{\text{th}} \\ & \mathsf{DEPOT} \text{ in a grid} \end{aligned}$

DATA PREPROCESSING

OBJECTIVE FUNCTION

EVALUATION METRIC

RECOMMENDATION

EVALUATION METRIC

DATA PREPROCESSING

OBJECTIVE FUNCTION

EVALUATION METRIC

RECOMMENDATION

RECOMMENDATION – MINIMUM UNIT DEPLOYED ANALYSIS

- **ASSUMPTION:** Capacity of delivery truck = 15 Hectolitre
 - Minimum 5 Hectolitre should be transported from brewery to depot.

AVERICK 2.0

RECOMMENDATION – TRANSPORTATION ANALYSIS

ASSUMPTION:

- Beer transported from brewery to depot follow minimum-maximum limit strictly.
- Some beer will be left over in certain grids and certain grids will still have capacity for more beer.
- Beer will be transported from one brewery to another brewery provided transportation cost is less than beer wastage cost.

MAVERICK 2.0